alexandr_palkin (alexandr_palkin) wrote,
alexandr_palkin
alexandr_palkin

Categories:

Осваивать новое место жительства вирусы-бактериофаги начинают с мутаций

Оригинал взят у  alev_biz в Как вирусы находят новых хозяев






, которые открывают им широкое «окно возможностей». Когда животное, растение, бактерия осваивают новую еду, новое место жительства, новую экологическую нишу, мы говорим, что у них появилась мутация, которая позволяет питаться им этой самой новой едой и жить на новом месте.




Как вирусы находят новых хозяев
Схема строения обычного бактериофага с хвостом, с помощью которого геном вируса перекачивается в клетку, и ножками, с помощью которых он крепится к поверхности бактерии.


Но что значит «новая мутация»? Изменения в ДНК происходят случайным образом, ни о каком предвидении и целеполагании говорить не приходится – как же тогда получается, что для смены образа жизни живой организм получает именно такую мутацию, которая нужна?






Думая так, мы забываем, что мутаций происходит очень много, и на одного счастливчика приходится огромное количество тех, кому не повезло, кто либо погиб в новых условиях, так и не оставив потомства, либо остался в прежней экологической нише. Однако в таком виде все выглядит слишком упрощенным, потому что мы упускаем подробности того, как работает хорошая мутация. Например, должна ли она менять образ жизни сразу и однозначно, так что индивидуум уже не может вернуться туда, где был, или же мутация, скорее, открывает «окно возможностей»?




Как вирусы находят новых хозяев
Бактериофаги под электронным микроскопом


В своей статье в Science исследователи из Калифорнийского университета в Сан-Диего пишут как раз об «окне возможностей». Джастина Мейера (Justin Meyer) и его коллег интересовало, как вирусы находят новых хозяев. Вирусы, как мы знаем, паразитируют на каких-то определенных клетках; если говорить о вирусах-бактериофагах, то это будут какие-то конкретные виды бактерий. Притом вполне очевидно, что по мере эволюции фаги как-то выучивались проникать в другие бактерии, помимо своих обычных хозяев.

Проникая в клетку, вирус использует белки на ее поверхности. Понятно, что самой клетке они нужны для другого, например, для распознавания каких-то веществ, но вирус использует эти наружные белки в своих целях. Чтобы открыть дверь в клетку, у вируса есть специальные белки, предназначенные для распознавания хозяина. Оба белка, вирусный и клеточный, взаимодействуют друг с другом, так что вирус может «причалить» к поверхности клетки и погрузиться внутрь, окруженный фрагментом клеточной мембраны.

Как и в случае с настоящими ключом и замком, вирусный «ключ»-белок может «открыть» клетку только одного типа. Почему так происходит? Все белки обладают характерной пространственной конфигурацией, которая, в свою очередь, обусловлена последовательностью аминокислот в белковой молекуле, и поэтому трехмерная структура у какого-нибудь пищеварительного фермента будет одна, а у поверхностного рецептора – другая. Функция белка тоже жестко зависит от его трехмерного «портрета». И когда речь заходит о межбелковом взаимодействии, важно, чтобы их 3D-структуры позволяли связаться друг с другом.

Вирусный белок из-за особенностей своей структуры может взаимодействовать только с поверхностными белками своего обычного хозяина. Как в таком случае происходит смена хозяина? Эксперименты с бактериофагом λ (лямбда) показали, что в его ген, который кодирует «ключ»-белок, может попасть мутация, которая делает его пространственную структуру очень гибкой. Мутантный белок может сворачиваться в пространстве разными способами, и, соответственно, узнавать не один какой-то клеточный белок, а несколько. Молекулярный «ключ» становится универсальным (ну, почти универсальным) – теперь он может открывать несколько «дверей». Фаг λ с такой мутацией мог проникать как в свою обычную бактерию-хозяина, так и в другие бактерии.

Стоит подчеркнуть, что речь идет всего лишь об одной мутации, благодаря которой один и тот же белок становился структурно многоликим. Конечно, не исключено, что потом вирусу понадобятся еще мутации, чтобы повысить эффективность проникновения в какую-то конкретную бактерию, в которой ему будет размножаться удобнее, чем в других. Но это уже дальнейшие настройки и оптимизации, которые помогают лучше освоиться в новых условиях.

Как можно догадаться, речь тут идет не только о том, чтобы лучше понимать фундаментальные механизмы эволюции. Возможно, новые данные помогут нам не только предсказывать вспышки инфекционных болезней, но и создавать новые, более эффективные лекарства против стремительно эволюционирующих вирусов и бактерий.

Автор: Кирилл Стасевич




Tags: Биология, Новое в науке и технике, США
Subscribe
  • Post a new comment

    Error

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 0 comments