alexandr_palkin (alexandr_palkin) wrote,
alexandr_palkin
alexandr_palkin

Category:

Фотонная защита

Россия вышла на второе место по протяженности линий квантовой связи


ОАО РЖД запустило в пилотную эксплуатацию первую линию квантовой связи между Москвой и Петербургом, которая гарантирует абонентам наивысший уровень киберзащищенности.

8 июня Россия торжественно вступила в эпоху квантовых коммуникаций: между Москвой и Санкт-Петербургом состоялся первый в истории телемост с использованием нового типа защищенной связи, основанного на фундаментальных явлениях физики элементарных частиц. Участниками тестовой видеоконференции стали вице-премьер РФ Дмитрий Чернышенко, губернатор Санкт-Петербурга Александр Беглов и генеральный директор ОАО «Российские железные дороги» (РЖД) Олег Белозеров, компания которого по поручению правительства выступает национальным интегратором всех усилий и компетенций в области квантовых коммуникаций. Пилотный 700-километровый участок будущей разветвленной квантовой сети, построенный ОАО РЖД в сотрудничестве с Санкт-Петербургским университетом информационных технологий, механики и оптики, российскими компаниями «Специальный технологический центр», «СМАРТС-Кванттелеком» и «Амикон», стал вторым по протяженности в мире после китайской линии Шанхай—Пекин (ее длина — 2 тыс. км, построена в 2017 году).

Принципиальное отличие квантовой линии связи — уникальная киберзащищенность, которая достигается через обмен между абонентами очень мелкими квантовыми импульсами — буквально отдельными фотонами. В основе инновационной технологии шифрования данных лежит один из основополагающих принципов квантовой механики — принцип неопределенности Гейзенберга. Суть его в том, что попытка измерить какой-либо параметр элементарной частицы, например скорость, неизбежно приводит к искажению других ее характеристик, таких как импульс или спин частицы. Криптографический ключ, построенный с использованием этого свойства единичных фотонных импульсов, позволяет мгновенно установить, что кто-то внешний попытался «прочитать» передаваемое сообщение, не говоря уже о возможности его перехвата и дешифровки. Подключиться к такой сети незаметно, а тем более навредить идущему потоку данных злоумышленник попросту не успеет, а значит, пользователи такой связи могут не сомневаться, что вся полученная ими информация пришла из надежного источника и полностью достоверна.

Отправлять единичные фотоны можно по обычным оптоволоконным сетям, где параллельно «путешествуют» триллионы фотонов традиционной связи, но для генерации отдельных квантов энергии, их трансляции, приема и декодирования нужны специальные устройства. На значительных расстояниях (более 100 км) потери отдельных частиц в оптическом канале неизбежны, поэтому фотоны «перебрасываются» на более коротких участках между доверенными узлами квантовой сети. На линии Москва—Санкт-Петербург расположено 18 таких типовых узлов и несколько крупных центров управления данными, которые в дальнейшем призваны стать точками разветвления сети на целую квантовую «паутину» по всей стране. Центральный управляющий узел системы физически расположен в Москве в Главном вычислительном центре ОАО РЖД, еще один — в Смольном в Санкт-Петербурге, третий мощный квантовый объект связи размещен посередине между столицами на базе центра обработки данных «Ростелекома» в г. Удомля Тверской области неподалеку от Калининской атомной электростанции.

Линии связи, защищенные квантовой криптографией, предоставляют совершенно новое качество надежности передаваемых данных, что критически важно для стратегических и оборонных промышленных предприятий, транспортной и энергетической инфраструктуры, органов государственного управления, коммерческих организаций и самих граждан, персональные данные которых все чаще становятся доходной добычей киберпреступников. По прогнозам ОАО РЖД, к 2024 году в России появится более 7 тыс. км квантовых сетей, а также запустится целый рынок квантового оборудования для их создания. В перспективе национальная квантовая сеть должна уметь подключаться к зарубежным (аналогичные разработки ведутся не только в Китае, но и в странах ЕС и США), а российские разработчики смогут занять существенную долю на глобальном рынке квантовых устройств связи и услуг квантовой криптографии.

Дальнейшее развитие квантовых коммуникаций связано с теоретической возможностью не только шифровать, но и непосредственно передавать информацию с помощью квантов. Это можно сделать благодаря еще одному удивительному явлению природы — «квантовой запутанности» элементарных частиц, название которого закрепилось за ним с 1935 года с легкой руки одного из основоположников квантовой механики, австрийского физика-теоретика Эрвина Шредингера, который анализировал теоретический спор других великих ученых: Альберта Эйнштейна, Бориса Подольского и Натана Розена. Проводя свои мысленные эксперименты, они обнаружили невероятное: если пара фотонов становится «квантово запутанной», то их некоторые характеристики становятся взаимозависимыми, хотя они больше не связаны между собой никакими известными взаимодействиями и далеко разнесены друг от друга в пространстве.

Для сферы телекоммуникаций это удивительное свойство элементарных частиц означает, что таким способом можно в теории передавать закодированную информацию абсолютно на любые расстояния без всяких проводов или оптических линий, причем информация будет доходить до получателя не со скоростью, близкой к скорости света, а мгновенно. Более того, в отличие от традиционных компьютерных систем, использующих «биты» в качестве минимальной единицы информации, квантовый компьютер оперирует «кубитами», которые могут нести в себе гораздо больше данных: при увеличении количества используемых кубитов потенциальный объем передаваемой информации растет по экспоненте.

Получать «запутанные» фотоны уже научились: лазером просвечиваются специальные кристаллы, проходя через которые луч разделяется на два или несколько потоков частиц с взаимозависимыми характеристиками. Экспериментальное подтверждение эффекта «квантовой телепортации» было зафиксировано в 1997 году независимыми группами ученых под руководством австрийца Антона Цайлингера и итальянца Франческо де Мартини, а реально перенести кубит информации на расстояние метра удалось лишь в 2006 году американскому Объединенному квантовому институту, созданному на базе Университета Мэриленд и Национального института стандартов и технологий, являющегося подразделением управления по технологиям Министерства торговли США.

Однако технологии хранения и транспортировки запутанных фотонов, хоть сколько-нибудь готовых к промышленному внедрению, еще не созданы нигде в мире, а это значит, что у России еще есть шансы перехватить лидерство в глобальной «квантовой гонке» и получить баснословный приз. С появлением мгновенной связи как минимум будет радикально решена одна из главных проблем освоения человечеством дальнего космоса, поскольку задержка традиционных электромагнитных и радиосигналов, посылаемых с Земли до спутников и обратно, на столь длинных дистанциях составляет минуты, часы и дни.

А пока, по словам Сергея Кулика, научного руководителя Центра квантовых технологий физического факультета МГУ, члена экспертной группы «Космические системы квантовых коммуникаций», в рамках реализации нацпроекта «Цифровая экономика» и «дорожной карты» ее подпрограммы «Квантовые коммуникации» нашей стране предстоит повторить на российском оборудовании результат недавнего китайского эксперимента и передать с низкоорбитального спутника квантовый криптографический ключ на наземный терминал «по линии прямой видимости» сквозь толщи земной атмосферы и космического вакуума.



Коммерсант
Tags: Квантовые технологии, Новое в науке и технике, Российская Федерация
Subscribe

  • Post a new comment

    Error

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 0 comments