alexandr_palkin (alexandr_palkin) wrote,
alexandr_palkin
alexandr_palkin

Categories:

В России испытали прототип двигателя нового типа для космоса

Ещё осенью 2019-го года промелькнули сообщения, что российские инженеры предложили ДВА новых типа двигателей для перемещения в космосе. Революции в скорости никто не обещал, но сообщения об ожидаемых КПД были обнадёживающие.

Увы, потом наступила тишина. Номера обоих патентов были доступны и теория смотрелась неплохо, но вестей об успехах не было.
И, те кто был в теме, разделились.
Одни решили, что это были очередные прожекты без последствий.
Другие ванговали, что это было просто преждевременное сообщение и работы ведутся втихую, а болтливые торопыги (возможно) получили "по-шапке" ;)



И вот, наконец появилась хорошая новость об одном из проектов - об испытаниях первой модели магнитоплазмодинамического двигателя.

Это уже не теория - вот кадр с первых испытаний:

кадр испытаний магнитоплазмодинамического двигателя

Пояснение для тех, кто не в теме

(Сведущие сразу могут прокрутить вниз, к самой новости)
Для выхода на орбиту с поверхности Земли по-прежнему нужны ракеты. И так будет ещё очень долго. А вот, на чём летать в межпланетном пространстве - большой вопрос.

Обычные жидкостные двигатели хороши тем, что быстро разгоняются. Но, развиваемые ими итоговые скорости слишком малы для быстрых перелётов от планеты к планете. Путь до Марса занимает больше полугода в лучшем случае - за это время космонавты получат довольно высокую дозу радиации (привет StarShip-у Илона Маска).
Станция "Кассини" летела к Сатурну почти 7 лет...
Нужно сокращать время полёта.

Одно из решений - российский космический ядерный буксир "Нуклон". Это ядерный электрогенератор, который запитывает электрические двигатели. Да, установка в целом всё равно "реактивная", но её КПД в разы выше, чем у обычных ракет. При той же массе топлива, мы получаем более высокую скорость в итоге.

Но, одно из ограничений "Нуклона" - малая тяга движков. Да, при полёте к Юпитеру, он обгонит "обычную" ракету. На расстояниях до Марса выгоды уже практически нет. А, до Луны он и вовсе будет лететь аж 200 дней (хотя, для беспилотника с полезной нагрузкой 10 тонн это не так плохо).

В итоге, Россия спроектировала энергоустановку в 480 кВт. Но, один из важнейших вопросов - увеличение тяги двигателей - остался. Самые лучшие ионные двигатели имеют тягу, с трудом дотягивающую до 1 Н (ньютона)...

Вот об этих конечных двигателях и идёт речь. "Нуклону" нужны новые технологии электрических "приводов".
Ионные движки близки к своему пределу - сейчас тяга лучшего из них - всего 1,5 Н. Теоретически, могут сделать ещё раза в два больше. Дальше - тупик.

Магнитный плазмодинамический двигатель

На этом фоне очень интересно сообщение, что российская компания «СуперОкс» представила данные об испытаниях первой версии своей силовой установки с использованием сверхпроводящих магнитов. Насколько можно понять, это промежуточный итог трёхлетней работы. Сообщается, что в работе также принимала участие кафедра физики плазмы НИЯУ МИФИ.

Статья об этом была опубликована в британском журнале Journal of Physics в декабре 2020 года. Посмотрите источник на английском - буду признателен за уточнения.

Кому лень - может посмотреть новость на русском на сайте самой компании.


Вакуумная камера для испытаний первых прообразов двигателей.

Вообще, двигатель на этом принципе был предложен нашим изобретателем Ю. В. Кубаревым в 1958 году (работы под его руководством велись ещё недавно в Воронежском ОАО КБХА).
Так что, неверно говорить о новом типе двигателя в теоретическом смысле.
Но, с точки зрения практики, вполне можно говорить о новинке. Потому что рабочего образца ещё не было ни у кого. Так, в 2014 году Кубарев обмолвился в одном интервью, что американская опытная установка "никуда не полетит, слишком тяжёлая" - изобретателю точно виднее было :).

Эти установки должны обеспечивать скорость истечения рабочего тела от 15 до 60 км/с, а по последним данным до 110 км/с и более. Это в 25 раз выше, чем в жидкостных реактивных двигателях (~4 км/с у водородных).

В двух словах: для создания тяги в этом двигателе используется сила Лоренца (сила, действующая на заряженные частицы электромагнитным полем). В статье также говорится, что это магнитоплазменные двигатели имеют потенциал тяги до 200 Н (правильно ли я перевёл это место? - уж больно хорошо звучит...).

Хотя, зам. ген. директора ЗАО «СуперОкс» Алексей Воронов был более осторожен, сказав, что:

«Разработанная технология позволяет проектировать двигатель с реактивной тягой вплоть до 5 Ньютонов и более без потери качества преобразования энергии. Этот результат стал возможен только благодаря высокому магнитному полю в нашем двигателе, которое создается магнитом из высокотемпературного сверхпроводника (ВТСП)»


на этой схеме в качестве рабочего тела используется литий

Сейчас испытан только лабораторный опытный образец, который развил мощность почти в 1 Н при мощности установки ~30 кВт.
Не впечатлило? Тогда ещё раз вспомните, что это пока только опытный образец, но он уже сравнялся с хорошими ионниками, которые развиваются много лет... есть над чем подумать и помечтать :)
(наш ИД-500 развивает 0,35-0,75 Н при чуть большей потребляемой мощности)


кадр с испытаний

Приведу цитату из статьи с более точными данными:

Средние данные с расходом топлива (аргона) 20, 15 и 10 мг/с составляют 1,22, 1,34 и 1,75 кДж/мг.
Максимальная расчетная тяга достигается 850 мН при 50 мг/с. Наилучший полученный удельный импульс равен 3840 с при 10 мг/с. Максимальные получаемые значения тяги при заданной тяге расход топлива 48 мН / кВт при 50 мг / с.
Получена максимальная мощность дуги составляет 27,5 кВт при 20 мг/с.
Наилучшая достигнутая эффективность катода диаметром 10 мм составляет 54% при 15 мг/с при тяге 554 мН и удельном импульсе 3763 с при 18,9 кВт (450 А, 42,1 В) при 29,3 мН / кВт и 1,3 кДж / мг.

Кому мало данных - читайте статью.

Что сказать, пока не густо, но для начала очень даже прилично.
Даже если в итоговых рабочих изделиях будут всего лишь заявленные 5-6 Н, - это в 3-4 раза лучше того, что могут обеспечить лучшие ионники... Лиха беда - начало :)

и ещё об одном. В двигателе применены сверхпроводники. А это означает уменьшение массы магнита в 4 раза по сравнению с медными магнитами в современных электрореактивных двигателях.

Меньше масса - выше ускорение, быстрее долетим!

тот самый магнит - вес 9 кг.

Думаю, что именно об этих движках говорилось в ТЗ на Нуклон - если мне не изменяет память, там шла речь именно о плазменных двигателях, а не об ионниках.

Два вопроса...

Первый - как обеспечат низкие температуры для сверхпроводников? Принято считать, что в космосе холодно, но не достаточно (и не забудем, что вакуум - лучший теплоизолятор). Значит, будет криогенная установка, а это дополнительный груз, снижение надёжности и т.д.
С другой стороны - материаловеды работают, иногда проскакивают сообщения о высокотемпературных сверхпроводниках... И тут следует заметить, что написано на сайте самой компании:

Компания СуперОкс создана в 2006 году Андреем Вавиловым для разработки технологии производства высокотемпературных сверхпроводниковых проводов 2го поколения – ВТСП-проводов.

Выводы делайте сами. Мне пока ясно одно - явно не новички в этой теме, но об их вовлечённости в космические проекты ничего не знаю.

Второе. В двигателях этого типа используется электроразряд. Значит, есть эррозия элементов конструкции. Специалисты «СуперОкс» говорят, что нашли довольно удачную конструкцию катода:

катод после всех испытаний

Говорится, что катод испытывался суммарно 2500 секунд с максимальным непрерывным временем 140 с. В итоге отмечен низкий износ...
Но, это всё частности. Главное то, что износ от электрокоррозии вообще есть - это влияет на срок службы всего двигателя. На Земле электрод - всего лишь быстро заменяемый расходник, а в космосе он становится непреодолимой проблемой.
Это насчёт работы в составе многоразового космического буксира...

В итоге

А в итоге мы имеем ещё один прототип электрического реактивного двигателя. Вдобавок к плазменным и ионным, появился магнитоплазмодинамический. Интересным является применение в нём сверхпроводников, хотя ряд вопросов конечно остаётся.

Пока он не впечатляет, да и не обязан - от первого рабочего образца много ожидать не следует. Его задача - отработать основные принципы работы. Первые автомобили ездили не быстрее лошадей... Но, теория говорила, что они могут гораздо больше - вскоре это и произошло.

Здесь - то же самое. Осталось набраться терпения. И пожелать нашим инженерам успехов! :)



Источник
Tags: Исследования Космоса, Новое в науке и технике, Российская Федерация
Subscribe

  • Post a new comment

    Error

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 0 comments